A forest loss report card for the world’s protected areas (2024)

References

  1. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article PubMed PubMed Central Google Scholar

  2. De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).

    Article Google Scholar

  3. Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    Article CAS PubMed Google Scholar

  4. Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).

  5. Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

    Article PubMed Google Scholar

  6. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article CAS PubMed Google Scholar

  7. Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article Google Scholar

  8. The State of the World’s Forests 2020 (FAO and UNEP, 2020).

  9. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article CAS PubMed Google Scholar

  10. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article CAS PubMed Google Scholar

  11. Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  12. Coetzee, B. W., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9, e105824 (2014).

    Article PubMed PubMed Central Google Scholar

  13. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article CAS PubMed Google Scholar

  14. Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  15. Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

    Article CAS PubMed Google Scholar

  16. Spracklen, B., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  17. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article CAS PubMed Google Scholar

  18. Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).

    Article PubMed Google Scholar

  19. Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: a systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591 (2019).

    Article Google Scholar

  20. Stolton, S. et al. in Protected Area Governance and Management (eds Worboys, G. L. et al.) 145–168 (ANU Press, 2015).

  21. Scharlemann, J. P. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).

    Article Google Scholar

  22. Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  23. Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article Google Scholar

  24. Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    Article CAS PubMed Google Scholar

  25. Leader-Williams, N. & Albon, S. Allocation of resources for conservation. Nature 336, 533–535 (1988).

    Article Google Scholar

  26. Jachmann, H. Monitoring law-enforcement performance in nine protected areas in Ghana. Biol. Conserv. 141, 89–99 (2008).

    Article Google Scholar

  27. Critchlow, R. et al. Improving law-enforcement effectiveness and efficiency in protected areas using ranger-collected monitoring data. Conserv. Lett. 10, 572–580 (2017).

    Article Google Scholar

  28. Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article Google Scholar

  29. Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).

    Article CAS PubMed Google Scholar

  30. Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article CAS PubMed Google Scholar

  31. Bruner, A. G., Gullison, R. E. & Balmford, A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54, 1119–1126 (2004).

    Article Google Scholar

  32. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

  33. Report of the Conference of the Parties on its Sixteenth Session, held in Cancun from 29 November to 10 December 2010. Addendum. Part Two: Action Taken by the Conference of the Parties at its Sixteenth Session Report FCCC/CP/2010/7/Add.1 (UNFCCC, 2011).

  34. Fletcher, R., Dressler, W., Büscher, B. & Anderson, Z. R. Questioning REDD+ and the future of market-based conservation. Conserv. Biol. 30, 673–675 (2016).

    Article PubMed Google Scholar

  35. Ministerio de Ambiente y Desarrollo Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Política Nacional para la Gestión Integral de la Biodiversidad y Sus Servicios Ecosistémicos (MADS, 2012).

  36. Sims, K. R. E. & Alix-Garcia, J. M. Parks versus PES: evaluating direct and incentive-based land conservation in Mexico. J. Environ. Econ. Manag. 86, 8–28 (2017).

    Article Google Scholar

  37. James, A. N., Green, M. J. B. & Paine, J. R. A Global Review of Protected Area Budgets and Staff WCMC Biodiversity Series No.10 (World Conservation Press, 1999).

  38. Walker, S., Price, R., Rutledge, D., Stephens, R. T. & Lee, W. G. Recent loss of indigenous cover in New Zealand. New Zeal. J. Ecol. 30, 169–177 (2006).

    Google Scholar

  39. Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).

    Article Google Scholar

  40. Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).

    Article Google Scholar

  41. Grossman, G. M. & Krueger, A. B. Environmental Impacts of a North American Free Trade Agreement (National Bureau of Economic Research, 1991).

  42. Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).

    Article Google Scholar

  43. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    Article CAS PubMed Google Scholar

  44. Walker, N., Patel, S., Davies, F., Milledge, S. & Hulse, J. Demand-Side Interventions to Reduce Deforestation and Forest Degradation (International Institute for Environment and Development, 2013).

  45. Marie-Vivien, D., Garcia, C. A., Kushalappa, C. G. & Vaast, P. Trademarks, geographical indications and environmental labelling to promote biodiversity: the case of agroforestry coffee in India. Dev. Policy Rev. 32, 379–398 (2014).

    Google Scholar

  46. Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).

    Article Google Scholar

  47. Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).

    Article CAS PubMed Google Scholar

  48. Belle, E. et al. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018).

  49. Geldmann, J. et al. Essential indicators for measuring area-based conservation effectiveness in the post-2020 global biodiversity framework. Preprint at https://doi.org/10.20944/preprints202003.0370.v1 (2020).

  50. Protected Areas Management Effectiveness Methodologies (Protected Planet 2020); http://go.nature.com/3ptIPHA

  51. Ervin, J. Rapid assessment of protected area management effectiveness in four countries. BioScience 53, 833–841 (2003).

    Article Google Scholar

  52. Conservancy, N. Conservation Action Planning: Developing Strategies, Taking Action, and Measuring Success at any Scale: Overview of Basic Practices (Nature Conservancy, 2007).

  53. Hockings, M. et al. The World Heritage Management Effectiveness Workbook: 2007 Edition: How to Build Monitoring, Assessment and Reporting Systems to Improve the Management Effectiveness of Natural World Heritage Sites 3rd draft (Univ. Queensland, 2007).

  54. Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).

    Article Google Scholar

  55. Stolton, S., Hockings, M., Dudley, N., MacKinnon, K. & Whitten, T. Reporting Progress in Protected Areas: A Site-Level Management Effectiveness Tracking Tool (World Bank/WWF Alliance for Forest Conservation and Sustainable Use, 2003).

  56. Hockings, M. et al. The IUCN green list of protected and conserved areas: setting the standard for effective area-based conservation. Parks 25, 57–66 (2019).

    Google Scholar

  57. Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. South Wales 58, 7–17 (2014).

    Google Scholar

  58. Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).

  59. The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, accessed 1 January 2020); https://www.protectedplanet.net/

  60. Iacus, S. M., King, G. & Porro, G. Causal inference without balance checking: coarsened exact matching. Polit. Anal. 20, 1–24 (2012).

    Article Google Scholar

  61. Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).

    Article PubMed PubMed Central Google Scholar

  62. Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).

    Article PubMed PubMed Central Google Scholar

  63. Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    Article CAS PubMed Google Scholar

  64. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (Columbia Univ. Center for International Earth Science Information Network, 2018).

  65. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article Google Scholar

  66. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article CAS PubMed Google Scholar

  67. Bode, M., Tulloch, A. I., Mills, M., Venter, O. & Ando, W. A. A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conserv. Biol. 29, 765–774 (2015).

    Article PubMed Google Scholar

  68. Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).

    Article Google Scholar

  69. Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).

    Article Google Scholar

  70. Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B 278, 1633–1638 (2010).

    Article PubMed Google Scholar

  71. Iacus, S. M., King, G. & Porro, G. CEM: software for coarsened exact matching. J. Stat. Softw. 30, 1–27 (2009).

    Article Google Scholar

  72. Rosenbaum, P. R. Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. Biometrics 63, 456–464 (2007).

    Article CAS PubMed Google Scholar

  73. Keele, L. An Overview of rbounds: an R Package for Rosenbaum Bounds Sensitivity Analysis with Matched Data White Paper, Columbus 1–15 (2010); https://go.nature.com/2M5DKXM

  74. Keele, L. J. rbounds: Perform Rosenbaum Bounds Sensitivity Tests for Matched and Unmatched Data. R Package (2014); https://cran.r-project.org/package=rbounds

  75. World Development Indicators 2018 (World Bank, 2018).

  76. Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ. Monit. Assess. 188, 555 (2016).

    Article PubMed Central Google Scholar

  77. Murakami, D. spmoran (ver. 0.2.0): an R package for Moran eigenvector-based scalable spatial additive mixed modeling. Preprint at https://arxiv.org/abs/1703.04467v9 (2017).

  78. Murakami, D. & Griffith, D. A. Spatially varying coefficient modeling for large datasets: eliminating N from spatial regressions. Spat. Stat. 30, 39–64 (2019).

    Article Google Scholar

  79. Murakami, D. & Griffith, D. A. Balancing spatial and non-spatial variation in varying coefficient modeling: a remedy for spurious correlation. Preprint at https://arxiv.org/abs/2005.09981 (2020).

  80. Walker, W. et al. Forest carbon in Amazonia: the unrecognized contribution of Indigenous territories and protected natural areas. Carbon Manag. 5, 479–485 (2014).

    Article CAS Google Scholar

  81. Robinson, E. J., Albers, H. J. & Busby, G. M. The impact of buffer zone size and management on illegal extraction, park protection, and enforcement. Ecol. Econ. 92, 96–103 (2013).

    Article Google Scholar

  82. Koop, G. & Tole, L. Is there an environmental Kuznets curve for deforestation? J. Dev. Econ. 58, 231–244 (1999).

    Article Google Scholar

  83. Barnes, M. D., Craigie, I. D., Dudley, N. & Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. Ann. NY Acad. Sci. 1399, 42–60 (2017).

    Article PubMed Google Scholar

  84. Chamberlin, T. C. The method of multiple working hypotheses. Science 15, 92–96 (1890).

    Article Google Scholar

Download references

A forest loss report card for the world’s protected areas (2024)
Top Articles
Latest Posts
Article information

Author: Kimberely Baumbach CPA

Last Updated:

Views: 6537

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Kimberely Baumbach CPA

Birthday: 1996-01-14

Address: 8381 Boyce Course, Imeldachester, ND 74681

Phone: +3571286597580

Job: Product Banking Analyst

Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.